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Abstract— The concept of opposition-based learning (OBL)
can be categorized into Type-I and Type-II OBL methodologies.
The Type-I OBL is based on the opposite points in the
variable space while the Type-II OBL considers the opposite
of function value on the landscape. In the past few years,
many research works have been conducted on development
of Type-I OBL-based approaches with application in science
and engineering, such as opposition-based differential evolution
(ODE). However, compared to Type-I OBL, which cannot
address a real sense of opposition in term of objective value,
the Type-II OBL is capable to discover more meaningful
knowledge about problem’s landscape. Due to natural difficulty
of proposing a Type-II-based approach, very limited research
has been reported in that direction. In this paper, for the first
time, the concept of Type-II OBL has been investigated in
detail in optimization; also it is applied on the DE algorithm
as a case study. The proposed algorithm is called opposition-
based differential evolution Type-II (ODE-II) algorithm; it is
validated on the testbed proposed for the IEEE Congress on
Evolutionary Computation 2013 (IEEE CEC-2013) contest with
28 benchmark functions. Simulation results on the benchmark
functions demonstrate the effectiveness of the proposed method
as the first step for further developments in Type-II OBL-based
schemes.

I. INTRODUCTION

W ITH the fast accretion in complexity of real-world
problems both in engineering and science, such prob-

lems can still be managed using soft computing techniques
[1], [2]. The evolutionary optimization algorithms typically
generate some initial candidate solutions and then improve
them toward an optimum on the landscape, which meets the
criteria set by user. The improvement procedure is mostly
based on some biological operations. In order to make better
decisions by considering the whole variable space as well
as landscape in a shorter time, the idea of opposition-
based learning (OBL) was introduced in [3], which considers
opposite points in the search space.

The OBL concept can be discussed from Type-I and
Type-II perspectives [1], [3]. The Type-I OBL deals with
the relationship among concepts, based on their attributes,
without considering the genuine objective landscape. Gen-
erally speaking, the Type-I OBL computation is easy to
perform due to its linear definition in the variable space.
The Type-I OBL can be considered as an approximation
of the genuine intellection of opposite computing, which is
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the Type-II OBL. The Type-II opposition scheme requires a
profound understanding of the objective space. This concept
is typically difficult to be utilized in real-world applications,
since for the Type-I approach the variable space is already
known, while in the Type-II scenario a-priori knowledge
about the landscape is required, which is not generally
available for black-box problems.

The concept of Type-I OBL has been employed for
development of variant well-known machine learning and
optimization techniques such as artificial neural networks
(ANNs) [4], artificial bee colony (ABC) algorithm [6]-
[8], ant colony system (ACS) [9], [11], genetic algorithm
(GA) [13], differential evolution (DE) algorithm [14], [15],
[18]-[24], fuzzy systems [25], harmony search algorithm
(HSA) [26], multi-objective optimization [28], and discrete
and combinatorial optimization [29]. In order to solve real-
world problems, many Type-I OBL-based algorithms have
been utilized such as optimal design of electromagnetic
devices [7], large-scale optimization problems with imple-
mentation on graphics processing unit (GPU) [30], hydro-
thermal scheduling [31], economic load dispatch (ELD)
problems of power systems [26], traffic congestion identifica-
tion [33], placement of radio frequency identification (RFID)
readers [34], fuzzy image thresholding [17], [25], breast
cancer diagnosis [32], and classification for mass diagnosis
in mammography images [27], to mention some among many
others. These examples clearly indicate that, Type I OBL has
been widely used to develop novel intelligent solutions for
practical problems. The idea of OBL can also be utilized
in wireless communication systems [12], [16], and vehicular
navigation systems [2], for further developments as well.

In this paper, the untouched area of OBL, i.e. Type-II OBL,
is investigated and applied to accelerate DE algorithm for
the first time. In the literature, there are many opposition-
based differential evolution (ODE) inspired algorithms, but
all of them similar to the ODE are Type-I based approaches.
In other words, for the first time in this paper, the Type-
II opposition has been analyzed in depth and utilized in
optimization. The Type-II concept makes more sense, since
the objective in an optimization problem is finding the opti-
mum value of objective function. In this term, looking for an
opposite of value on the objective space can provide deeper
knowledge compared to opposite of candidate solution points
on the variable space. In this paper, we are going to analyze
this challenging concept in detail from different perspectives.
Then, the proposed ODE Type-II will be compared with its
parents (DE and ODE Type-I) on a well-known test suit with
28 benchmark functions.
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In the next section, a brief review of DE algorithm is
presented. In the Section III, the concept of OBL is discussed
for Type-I and Type-II schemes. The idea of proposed ODE-
II algorithm is presented in Section IV and its performance
is discussed in details in Section V. Finally, the paper
is concluded in Section VI, which includes some further
research directions to develop the idea of ODE-II.

II. DIFFERENTIAL EVOLUTION

Generally speaking, during solving a black-box optimiza-
tion problem, an optimizer has no knowledge about the shape
of landscape and tries to find optimal decision variables to
minimize/maximize an objective function. The DE algorithm
is one of the state-of-the-art evolutionary algorithms, which,
similar to other algorithms in its category, starts its search
procedure with some random initial vectors and tries to
improve them generation by generation toward an optimal
solution. The population P = {X1, ...,XNP } consists of NP
vectors in generation g, where each Xi is a D-dimensional
vector defined as Xi = {xi,1, ..., xi,D}. A simple DE
algorithm consists of the following three major operations:
mutation, crossover, and selection.

Mutation: This step selects three vectors randomly from
the population such that i1 6= i2 6= i3 6= i where i ∈
{1, ..., NP} and NP ≥ 4, for each vector Xi. The mutant
vector is calculated as follows:

Vi = Xi1 + F (Xi2 − Xi3) (1)

where the factor F ∈ [0, 2] is a real constant number, which
controls the amplification of the added differential variation
of (Xi2 −Xi3). The exploration of DE increases by selecting
higher values for F .

Crossover: The crossover operation is to increase diversity
of the population by shuffling the mutant and parent vector
as follows:

Ui,d =

{

Vi,d, randd(0, 1) ≤ Cr or drand = d

xi,d, otherwise,
(2)

where d = [1, ..., D], Cr ∈ [0, 1] is the crossover rate
parameter, and rand(a, b) generates a random number in
arbitrary interval [a, b] with uniform distribution. Therefore,
the trial vector Ui ∀i ∈ {1, ..., NP} is generated as

Ui = {Ui,1, ..., Ui,D}. (3)

Selection: The Ui and Xi vectors are evaluated and compared
with respect to their fitness values. The one with better fitness
is selected for the next generation.

III. OPPOSITION-BASED LEARNING

In this section the concept of OBL is discussed from
Type-I and Type-II viewpoints. Then, the min-max-based and
centroid-based opposite computing schemes are discussed.
Since the OBL was started with the Type-I trend, the min-
max oppositional computing has received more attention due
to availability of variables’ boundaries. However, the centroid
opposition computing works based on the centroid point of
population and does not require variables’ boundaries; which
can be employed in Type-II approach.

Fig. 1. Type-I versus Type-II opposition definition for a sample landscape.

A. Type-I vs. Type-II Opposition-Based Learning

Typically in population-based algorithms, the idea is gen-
erating some random initial candidates and then trying to
guide them toward an optimal solution. By employing the
concept of considering candidates and corresponding op-
posite candidates simultaneously, the search algorithm can
better explore the landscape via higher search coverage
and diversity of its candidate solutions with the chance of
having fitter candidates. This idea can be encouraged by the
probability theory, where for a specific problem, the opposite
of the current candidate solution has a higher chance to
be closer to the solution than a random number [22]. This
phenomenon can accelerate convergence rate of the optimizer
[1], [14]. The concept of OBL can be categorized into Type-I
and Type-II schemes [1].

The min-max Type-I OBL can be defined for a D-
dimensional point xd ∈ [Xmin,d, Xmax,d] as

x̆d = Xmin,d +Xmax,d − xd (4)

where d = 1, ..., D. By considering X = (x1, ..., xD) as
a point in the D-dimensional space and X̆ = (x̆1, ..., x̆D)
as the opposite point of X, if f(X) ≤ f(X̆), where f(.) is
the fitness value, X̆ is considered as the better solution in a
maximization problem. In order to have a general definition,
if ψ ∈ Ψ is a concept in a D-dimensional space and Φ :
Ψ → Ψ is a one-to-one mapping function, which defines an
oppositional relationship between two unique elements ψ1

and ψ2 of concept class Ψ, the opposition concept for OBL
Type-I can be determined as ψ̆ = Φ(ψ). In addition, it is fair
to say if Φ(ψ1) = ψ2 and then Φ(ψ2) = ψ1, the oppositional
relationship is symmetric in this case.

In the Type-II OBL, for the point X we have f(X) ∈
[Ymin, Ymax]. Therefore, the min-max opposition computa-
tion for Type-II OBL is defined as

f̆(X) = Ymin + Ymax − f(X). (5)

In practice, since the landscape boundaries are unknown,
the boundaries Ymin and Ymax can be estimated using
sampling as ymin and ymax, respectively. However, it is
proved in the next subsection that the centroid-based method
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Fig. 2. Monte-Carlo simulation for min-max and centroid oppositional
computation.

can demonstrate better estimation compared to min-max-
based opposition.

In order to present an example of Type-I and Type-II
OBL schemes, a sample nonlinear function for variable range
[Xmin, Xmax] and landscape range of [Ymin, Ymax] is illus-
trated in Fig. 1. In this scenario, an arbitrary point x with its
corresponding objective value f(x) is selected. The opposite
of x using Type-I approach is calculated using Eq. (4) and
denoted by x̆I , where f(x̆I) demonstrates its corresponding
value on the landscape, objective value. By having f(x),
its Type-II opposite f̆(xII) is calculated using Eq. (5). The
corresponding values of f̆(xII) in the variable space are
denoted on the X-axis as x1II and x2II . As it is demonstrated,
for non-monotonic functions Type-II opposition, f̆(xII), may
refer to more than one values on the variable space, which
is referred to one-to-many mapping. In such situation, a
simple way is to select one of the one-to-many variable space
solutions randomly.

From the above discussion, it is apparent that the Type-
II OBL can lead us to more reliable candidate solution
than the Type-I OBL approach [1]. Because the objective
of an optimization problem is minimizing/maximizing the
objective space, so the search should be conducted on the
objective space to find the minimum/maximum point(s) and
then the corresponding solution(s).

B. Min-Max vs. Centroid-based Oppositional Computation

If we define fc(X) = (Ymin + Ymax)/2 as the center of
interval [Ymin, Ymax], we can simply replace (Ymin+Ymax)
in Eq. (5) with 2fc(X). As it is clear for the Type-II OBL,
in a black-box optimization, f(X) as well as its boundaries
are not available. In this case, the centroid-based opposition
can be employed for calculation of f(Xi) opposite as

f̆(Xi) = 2fc(X)− f(Xi) (6)

where i = 1, ..., NP and fc(.) is the population centroid
defined as follows:

fc(X) =
1

NP

NP
∑

i=1

f(Xi). (7)

We show that by using Monte-Carlo method, in case
of not having the minimum and maximum boundaries of
landscape, the centroid approach can be employed with a
better performance than min-max method.

The simulation is conducted for dimensions as d =
(1, ..., 1000) and with NRun = 1e4 number of independent
runs per dimension. In each run, NS = 50 sample points as
well as one point, as an optimum, are uniform randomly
generated in interval [Xmin, Xmax]. Then, the estimated
boundary based on the generated sample points is calcu-
lated as [xmin, xmax]. In each independent run r for each
dimension d, the Euclidean distance between the opposite of
a sample point and the optimal point is calculated. Then, the
minimum distance is selected as

∆r = min{δr1, ..., δ
r
NS}. (8)

By considering the min-max and centroid-based opposition
calculation approaches for comparison, the distances using
both approaches are calculated and then cardinality (the
number of runs) in which each one was successful (i.e., closer
to optimum) is counted as

ncentroid = card{∆r
centroid < ∆r

min−max} (9)

and

nmin−max = card{∆r
centroid > ∆r

min−max}. (10)

By having in mind the total number of runs, the success
probability for min-max scheme is defined as follow:

Pmin−max =
ncentroid

NRun
(11)

and as well for the centroid scheme a similar probability is
calculated as follow:

Pcentroid =
nmin−max

NRun
(12)

where Pcentroid + Pmin−max = 1. By using the Eq.s (11)
and (12), probability of success for min-max and centroid
schemes are illustrated in Fig. 2. It demonstrates an in-
creasing trend for d < 200, while for higher dimensions
the probability difference among dimensions remains almost
flat. Simulation results deliver: Pmin−max = 41.95% and
Pcentroid = 58.05% for d = 200 and for d = 1000 the
Pmin−max = 41.73% and Pcentroid = 58.27%. The results
show that the centroid-based oppositional computing not only
works for Type-II OBL, as an approach where the landscape
boundaries are unknown, but also can outperform the min-
max-based oppositional computing approach in term of the
probability of closeness to an optimal solution in a black-box
problem.
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Algorithm 1 ODE-II
1: Procedure ODE-II
2: Parameter Setting(Jr, Cr, F,NFCMax, D,NP )
3: call Algorithm 2: Look-Up Table Generation
4: call Algorithm 3: Population Initialization
5: while (|BFV > V TR| > EV TR & NFC < NFCMax) do
6: call Algorithm 4:Differential Evolution
7: g = g + 1
8: if rand(0, 1) ≤ Jr then
9: call Algorithm 6: ODE-II Jumping

10: end if
11: end while

Algorithm 2 Look-Up Table Generation
1: Procedure Look-Up Table Generation
2: Generate Look-Up Table as L = {X1, ...,XS} : Xi =

{xi,1, ..., xi,D}, ∀ i ∈ {1, ..., S}
3: Evaluate L as ELi = f(Xi), ∀ i ∈ {1, ..., S}

IV. TYPE-II OPPOSITION-BASED DIFFERENTIAL
EVOLUTION

It is clear that to utilize Type-II opposition in a black-box
optimization problem, having knowledge about the landscape
is important. Therefore, inverse-meta-modelling techniques
are required to map objective value to the corresponding
variables values. In this work, the idea is sampling landscape
and using an interpolation method to estimate the variables
space values corresponding to objective space values. The
initial sampling of landscape is then improved during search
process, without paying any additional objective function
evaluation cost. In fact, visited extra points during the search
process are also added to our sampling set to make it more
reliable.

The pusdocode of the proposed ODE-II algorithm is given
in Algorithm 1. It consists of different procedures, which are
Look-Up Table Generation (Algorithm 2), Population Initial-

ization (Algorithm 3), Differential Evolution (Algorithm 4),
and ODE-II Jumping (Algorithm 6).

The first step of Algorithm 1 is parameters setting, where
Jr is the jumping rate and NFCMax is maximum number
of function calls. Then, a sampling of landscape is performed
using the Look-Up Table Generation procedure as explained
in Algorithm 2.

1) Look-Up Table Generation: In this procedure a look-
up table L = {X1, ...,XS} is generated, where Xi =
{xi,1, ..., xi,D} for i = 1, ..., S. Each space variable is
a random number with uniform distribution generated as
xi,d = Xmin + rand(0, 1) × (Xmax − Xmin), where S =
NP ×D is size of the look-up table, NP is the population
size, and D is the problem dimension. The fitness value of
samples in L are denoted by EL = f(L). Back to Algorithm
1, the first population generation is then constructed as well
as selected by the Population Initialization procedure.

2) Population Initialization: After Look-Up Table Gener-

ation, NP population vectors are selected randomly from
L to construct the population P in the generation g = 0 as
explained in Algorithm 3. Then, the center point of fitness

Algorithm 3 Population Initialization
1: Procedure Population Initialization
2: g = 0
3: Select NP random population from L as P = {X1, ...,XNP }

4: fc(P) =
NP∑
i=1

f(Xi)/NP, ∀ Xi ∈ P

5: for i = 1 → NP do
6: for d = 1 → D do
7: x̆I,i,d = Xmin,d +Xmax,d − xi,d

8: end for
9: if X̆I,i ∈ L : X̆I,i = Xk, k ∈ {1, ..., S} then

10: f(X̆I,i) = ELk

11: else
12: Evaluate X̆I,i as f(X̆I,i)
13: Add X̆I,i to L
14: Add f(X̆I,i)to EL
15: end if
16: PI,i = X̆I,i

17: f̆(XII,i) = 2fc(P)− f(Xi)
18: if f̆(XII,i) ∈ EL : f̆(XII,i) = ELk, k ∈ {1, ..., S} then
19: XII,i = Xk : Xk ∈ L
20: else
21: call Algorithm 5: InterpolationCentre
22: end if
23: PII,i = XII,i

24: end for
25: Select NP fittest individuals Pg = {X1, ...,XNP } from the set

{P,PI ,PII}

values of P is calculated by Eq. (7).
In order to prepare the Type-I opposite population PI ,

opposite of each population member in P is calculated using
the min-max method by Eq. (4) as

x̆I,i,d = Xmin,d +Xmax,d − xi,d. (13)

If objective value of X̆I,i does not exist in the EL, its
objective value is computed as f(X̆I,i). The sampling table
L and its evaluated set EL is then updated by the new value
to develop the look-up table without suffering from an extra
objective evaluation cost. The new population vector X̆I,i is
then added to the Type-I opposite set PI . Since landscape
boundaries are unknown, as discussed in subsection B of
Section III, the Type-II opposite of f(Xi) is computed using
Eq. (6).

If the fitness value f̆(XII,i) already exists in the EL,
f̆(XII,i) ∈ EL, the corresponding variables vector Xk in the
L, i.e. XII,i, is picked up and added to the opposite Type-
II population PII . Otherwise, an interpolation technique is
employed to estimate XII,i. In this paper, the centre-based
interpolation technique is employed, which is illustrated in
Algorithm 5 and will be discussed later at the end of this
section. Finally, the fittest NP individual vectors are selected
from the population pool {P,PI ,PII} to construct the current
population Pg = {X1, ...,XNP }.

Back to Algorithm 1, the termination criterion is met
when the difference between best fitness value (BFV) and
fitness value to reach (VTR) is less than fitness error value
to reach (EVTR), or ODE-II searching procedure passes
the maximum number of function calls NFCMax, that is
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Algorithm 4 Differential Evolution
1: Procedure Differential Evolution
2: P = Pg

3: for i = 1 → NP do
4: Select three random population vectors from P where (i1 6=

i2 6= i3 6= i)
5: Vi = Xi1

+ F (Xi2
− Xi3

)
6: for d = 1 → D do
7: if rand(0, 1) < Cr then
8: Ui,d = Vi,d

9: else
10: Ui,d = xi,d

11: end if
12: end for
13: if Ui ∈ L : Ui = Xk, k ∈ {1, ..., S} then
14: f(Ui) = ELk

15: else
16: Evaluate Ui as f(Ui)
17: Add Ui to L
18: Add f(Ui) to EL
19: end if
20: if f(Ui) ≤ f(Xi) then
21: X′

i
= Ui

22: else
23: X′

i
= Xi

24: end if
25: end for
26: Xi = X′

i
, ∀i ∈ {1, ..., NP}

27: Pg+1 = {X1, ...,XNP }

Algorithm 5 InterpolationCentre
1: Procedure InterpolationCentre

2: if f̆(XII,i) < ELL then
3: f̆(XII,i) = ELL + (ELL − f̆(XII,i))
4: else
5: if f̆(XII,i) > ELU then
6: f̆(XII,i) = ELU − (f̆(XII,i)− ELU )
7: end if
8: end if
9: Find j such as ELj < f̆(XII,i) < ELj+1 for j ∈ {1, ..., S −

1}

10: XII,i =
Xj + Xj+1

2
: {Xj ,Xj+1} ∈ L

NFC ≥ NFCMax. If the termination criterion is not met,
the Differential Evolution procedure is run.

3) Differential Evolution: Similar to the Differential Evo-

lution procedure described in section II, the Mutation and
Crossover are conducted on the population set P in Algo-
rithm 4. In order to save the number of NFCs as much as
possible, if the trial vector Ui exists in the L such as Ui ∈ L
for the index k, where Ui = Xk and k ∈ {1, ..., S}, the
corresponding objective value is picked up from the EL set
without suffering from extra objective function computation.
Otherwise, fitness value of Ui is evaluated as f(Ui). Then, Ui

and its corresponding fitness value are added to the L and EL
sets, respectively. Following with the Selection procedure, the
population is obtained as Pg+1 = {X1, ...,XNP }.

Back to Algorithm 1, after updating the generation counter,
if rand(0, 1) ≤ Jr, where Jr is the jumping rate, the ODE-
II generation jumping will get involved in the in procedure.

Algorithm 6 ODE-II Jumping
1: Procedure ODE-II Jumping
2: P = Pg

3: fc(P) =
NP∑
i=1

f(Xi)/NP, ∀ Xi ∈ P

4: for i = 1 → NP do
5: for d = 1 → D do
6: xI,i,d = xmin,d + xmax,d − xi,d

7: end for
8: if XI,i ∈ L : XI,i = Xk, k ∈ {1, ..., S} then
9: f(XI,i) = ELk

10: else
11: Evaluate XI,i as f(XI,i)
12: Add XI,i to L
13: Add f(XI,i)to EL
14: end if
15: PI,i = XI,i

16: f̆(XII,i) = 2fc(P)− f(Xi)
17: if f̆(XII,i) ∈ EL : f̆(XII,i) = ELk, k ∈ {1, ..., S} then
18: XII,i = Xk

19: else
20: InterpolationM
21: end if
22: PII,i = XII,i

23: end for
24: Select NP fittest individuals Pg = {X1, ...,XNP } from the set

{P,PI ,PII}

4) ODE-II Jumping: After obtaining the population P =
{X1, ...,XNP }, the ODE-II Jumping procedure is applied as
explained in Algorithm 6. In this procedure, similar to Al-
gorithm 3, the fc(P) is calculated using Eq. (7) and then the
min-max-based opposites of P are computed using Eq. (4).
Since the sampling table L is regularly updated throughout
the ODE-II algorithm, the L is checked for existence of XI,i’s
objective value to avoid having an extra objective function
call. Therefore, if XI,i ∈ L such that XI,i is equal to Xk,
where k ∈ {1, ..., S}, the index k is detected. The objective
value of X̆I,i is extracted from EL as f(X̆I,i). In case of not
having X̆I,i in L, its objective value is calculated and added
to the EL set. After updating the PI,i set, the Type-II opposite
point of Xi is computed using the centroid-based oppositional
computing method as in Eq. (6). The corresponding Type-
II variable XII,i is extracted from the look-up table if
f̆(XII,i) ∈ EL such that f̆(XII,i) = ELk for k ∈ {1, ..., S}.
Otherwise, the InterpolationCentre method in Algorithm 5
is employed for XII,i estimation. The final population set is
constructed by selecting the NP fittest variable vectors from
the {P,PI ,PII} set as Pg = {X1, ...,XNP }.

5) InterpolationCentre: Several interpolation methods can
be employed to find an estimate of variable in the Type-II
opposition scheme. The center-based interpolation procedure
is used in this work as illustrated in Algorithm 5. In this
procedure, first the f̆(XII,i) availability is checked to find out
whether is it in the range of estimated landscape boundaries
of EL or not, [ELL, ELU ]. This boundary is similar to the
one in Fig. 1 presented as [ymin, ymax]. If f̆(XII,i) < ELL,
the f̆(XII,i) is flipped by using the lower limit ELL as

f̆(XII,i) = ELL + (ELL − f̆(XII,i)) (14)
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and if f̆(XII,i) > ELU it is flipped by using the upper limit

f̆(XII,i) = ELU − (f̆(XII,i)− ELU ). (15)

After boundary check, the lower and upper limits of f̆(XII,i)
are looked up in the EL such that

ELj < f̆(XII,i) < ELj+1 (16)

for j ∈ {1, ..., S−1}to find the index j. By using the center-
based interpolation, we can obtain an estimated vector XII,i

as
XII,i =

Xj + Xj+1

2
(17)

where {Xj ,Xj+1} ∈ L.

V. SIMULATIONS

In this section, the proposed ODE-II algorithm is tested
and compared with DE and ODE algorithms. In the next
subsection, the parameters setting as well as employed
benchmark functions are explained. Then, the comparison
strategies and metrics for performance evaluations are pre-
sented. Later, the detailed simulations and visualizations are
conducted.

A. Parameter Setting and Benchmark Functions

All the experiments have been conducted on the CEC-
2013 testbed [10], which is an improved version of CEC-
2005 [5] counterpart with additional test functions and
modified formula of the composition functions, oscillations,
and symmetric-breaking transforms. This testbed contains 28
benchmark functions, divided into three categories which
are uni-modal functions (f1 − f5), multi-modal functions
(f6 − f20), and composition functions (f21 − f28) [5], [10].
Parameters setting for all the experiments are presented
in Table I adapted from the literature unless a change is
mentioned [10], [14]. The reported values are averaged for
50 independent runs per function.

B. Comparison Strategy and Metrics

In order to have a measure of convergence speed between
two algorithms Alg1 and Alg2, the acceleration rate (AR) is
considered as

AR =
NFCsAlg1

NFCsAlg2

(18)

where NFCsAlg1 and NFCsAlg2 represent NFCs of Alg1
and Alg2, respectively. Therefore, if AR > 1 it means that
Alg2 is faster than Alg1. The number of times an algorithm
reaches the optimal solution, i.e. |BFV − V TR| ≤ EV TR

for NFC < NFCMax, is reported based on the success rate
(SR) measure defined by

SR =
card{|BFVr − V TR| ≤ EV TR}

NRun
, (19)

for all r ∈ {1, ..., NRun}.
Since both SR and NFC are important measures to

compare performance of algorithms in terms of convergence
rate and robustness, these measures are combined together as

TABLE I
PARAMETER SETTING FOR ALL THE EXPERIMENTS

Parameter Description Value
Jr Jumping Rate Constant 0.3
NP Population Size 50
F Differential Amplification Factor 0.5
Cr Crossover Probability Constant 0.9

NFCMax Maximum Number of Function Calls 1e4×D

EV TR Objective Function Error Value to Reach 1e-8
NRun Number of Runs 50

TABLE II
PERFORMANCE COMPARISON OF DE, ODE, AND ODEII ON CEC-2013
BENCHMARK FUNCTIONS. THE HIGHEST SUCCESS PERFORMANCE SP IS

HIGHLIGHTED IN BOLDFACE.

F
DE ODE ODE-II

NFC SR NFC SR NFC SR AR1 AR2

1 2438 100 2180 100 1869 100 1.30 1.17
2 3737 100 3453 100 2945 100 1.27 1.17
3 4477 100 4549 100 4985 94 0.90 0.91
4 3702 100 3537 100 2896 100 1.28 1.22
5 3222 100 2883 100 2372 100 1.36 1.22
6 2534 100 3111 100 2427 100 1.04 1.28
7 7450 100 8453 100 5589 98 1.33 1.51
8 7677 100 7516 100 4779 98 1.61 1.57
9 7904 100 8735 100 5041 100 1.57 1.73
10 6224 100 5524 100 4424 100 1.41 1.25
11 3598 100 3408 100 2789 100 1.29 1.22
12 4217 100 4218 100 3066 100 1.38 1.38
13 3833 100 3789 100 2831 100 1.35 1.34
14 8364 84 7896 90 6558 92 1.28 1.20
15 13311 54 11777 64 13489 44 0.99 0.87
16 18678 94 19403 28 19506 20 0.96 0.99
17 10731 72 10369 66 11419 58 0.94 0.91
18 14076 54 14778 54 14993 42 0.94 0.99
19 3434 100 3901 100 3550 98 0.97 1.10
20 14241 52 12602 64 14590 38 0.98 0.86
21 5313 100 5129 100 3636 100 1.46 1.41
22 7112 100 7349 100 5377 98 1.32 1.37
23 7490 100 7743 100 5280 98 1.42 1.47
24 6957 96 7151 94 5091 94 1.37 1.40
25 9584 76 7176 92 10937 56 0.88 0.66
26 7930 86 8383 84 7545 80 1.05 1.11
27 16863 34 14610 56 17810 16 0.95 0.82
28 6352 94 6593 90 4735 94 1.34 1.39

a measure called success performance (SP ) [5], [14], which
is defined as follow:

SP =
NFCs

SR
. (20)

The lower SP means a higher performance. Therefore, SPN

is defined as the number of times in percentage that an al-
gorithm has the best SP among other competing algorithms
on the 28 benchmark functions.

C. Results Analysis

1) Comparison of DE, ODE, and ODE-II Algorithms:

The performances of DE, ODE, and ODE-II algorithms are
compared by using NFC, SR, and AR values in Table II for
D = 2. Based on Eq. (18), the terms AR1 and AR2 refer
to NFCDE/NFCODE−II and NFCODE/NFCODE−II ,
respectively. The results regarding AR metric show that the
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Fig. 3. Best value so far (BFV ) versus number of function calls (NFC) performance graphs as an example of performance comparison among DE,
ODE, and ODE-II algorithms.

TABLE III
THE SUMMARIZED PERFORMANCE RESULTS OF DE, ODE, AND ODE-II

FOR SRAvg , NFCAvg , AND SPN COMPARISON METRICS.

Metric DE ODE ODE-II
SPN %21.42 %14.28 %64.28
SRAvg 89.14 83.79 82.79

NFCAvg 7551.75 7364.86 6804.61

ODE-II has outperformed the DE and ODE algorithms on
%67.86 and %71.43 of benchmark functions, respectively.

In Table II, the results of algorithm with the highest SP
for each benchmark function is highlighted in boldface. It
shows that the ODE-II has outperformed the DE and ODE
in term of the best SPs. In Table III, the results regarding
SPN metric show that ODE-II has succeeded %64.28 of
benchmark functions, while the SPN for DE and ODE
algorithms are %21.42 and %14.28, respectively. Average
of NFCs and SRs are denoted by SRAvg and NFCsAvg

as in Table III. Regarding SRAvg , the DE algorithm has a
higher average SR. In term of NFCsAvg the ODE-II has
outperformed the DE and ODE algorithms.

The functions numbers f4, f8, and f23 from the uni-modal,
multi-modal, and composition functions classes are selected
for detailed performance analysis, respectively as in Fig. 3.
According to our observations, the ODE-II has a sharper
move toward convergence to the global optimal solution in
the exploration phase than the rest of algorithms. This is
while the DE algorithm is more effective during exploita-
tion phase. This fact is discussed in detail by considering
participation of DE-based, Type-I-based, and Type-II-based
individuals in the population after each generation jumping.

2) Contribution of Type-I and Type-II Opposite Individ-

uals after each Jumping: The term contribution refers to
portion of population each scheme Type-I, Type-II, and DE,
has in the population. As it was discussed in the Section IV,
the DE and ODE algorithms have contribution in making
the population after each generation jumping of ODE-II
algorithm. Fig. 4 illustrates the contribution (i.e., number of
the individuals) of Type-I and Type-II oppositions after each
generation jumping. The ODE-II has the most contribution
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Fig. 4. Contribution (i.e., number of individuals after the jumping) of DE,
Type-I OBL, and Type-II OBL in each population generation for benchmark
function f8; the optimal fitness value is -700; 50 runs conducted for each
generation.

in the early generations during the exploration phase. As the
number of generations increases, its contribution decreases
during the exploitation phase. The fine tuning on the other
side is mostly done by the DE population. The DE has a
few contribution in the exploration phase and as the search
moves forward, its contribution in the population increases
to have more fine tuning. The Type-I opposition has a few
more contributions in exploitation phase than the exploration.
However, totally it has less contribution than both DE and
Type-II.

VI. CONCLUSION REMARKS

The opposition-based learning (OBL) considers both can-
didate solution and its opposite to increase the diversity in the
search process. So far the OBL concept has been categorized
into Type-I and Type-II schemes, in which the Type-I looks
for opposition in variable space, while the Type-II considers
objective values. Many works have been conducted on the
Type-I OBL, however, the concept of opposition thinking is
matched highly with Type-II opposition and can offer more
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knowledge to the optimizer. In this paper, the concept of
Type-II OBL has been investigated in detail for the first
time to overcome its difficulty to be utilized in a black-box
optimization problem. As a case study, we have utilized it
for accelerating differential evolution (DE) algorithm. This
work can be considered as a preliminary attempt in employ-
ing Type-II OBL concept in optimization. There are many
interesting but challenging directions in this field to embark
upon, such as proposing a fast and accurate method for large-
scale inverse meta-modeling and managing the cooperation
between ODE-II components.
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